These huntsman spiders do something weird: live together as a big, happy family

How descendants of cannibals evolved abilities to share a home mostly without killing each other — never mind the rare oopsie snack — resonates after several pandemic years.

Among the many kinds of velvety Delena huntsman spiders, four species from Australia show what for their kind is a downright freaky tolerance between a mom and her live-in offspring. “Cannibalism might happen occasionally, but with Delena cancerides, it’s almost never,” says behavioral ecologist Linda Rayor of Cornell University, who has studied them in the wild and in her lab for 20 years.
Not eating their own kind isn’t really the oddity here: Cannibalism varies a lot among spider species, Rayor says, but overall, it’s mostly a move of solitary kinds of spiders if they meet outside of flirting or baby-guarding demands (SN: 4/25/22).

A small number of Delena species, however, generally tolerate their own kind. The only exception Rayor sees in D. cancerides are a wild-caught female’s takedown of a full-grown male still in her cage after she lays eggs. “Wild-caught females are very intolerant of males who stick around too long,” she says.

What’s really strange, at least in the arachnid world, is these spiders’ shared family life. Out of the more than 50,000-plus known spider species, biologists classify fewer than 80 as truly social. In the most complex, hundreds or even thousands of females spin a great airy silken city, where some stay their entire lives. However, Rayor says, “my huntsman don’t do that.”

Some other biologists wouldn’t consider the Delena spiders Rayor studies as fully social — no spun-silk Sydney. Yet these spiders are not truly solitary either. A female doesn’t spin a web but shelters in a crevice, perhaps behind peeling bark on an acacia tree or under a slab of rock. These crevice-dwellers’ bodies look unusually flattened in profile: “a credit-card spider,” one scientist called the species, with some poetic license.

When a female triumphs in finding real estate, the kids can linger for months in her splendid mom cave — the kids with no sex life yet, that is. Never mind that older offspring already go out hunting on their own at night, or that often one or two later clutches of little ones hatch before the older ones leave. Spider moms guarding poppyseed-tiny hatchlings are common. Living with capable, nearly grown offspring, is strange in the arachnid world.
The most sociable of these sort-of tolerant moms, D. cancerides, lets a cohort of youngsters hang around the home for about a year after hatching. That’s a good portion of life for spiders that live only two and a half years. One of the reasons for doing so may sound familiar: Suitable housing can be hard to find.

Rayor once thought hanging with mom was an Australian thing, but she has now learned about tolerant moms from Madagascar in a Damastes species. To study the evolution of traits that add up to family life in the five species, Jacob Gorneau, now at the California Academy of Sciences in San Francisco, and his Cornell colleagues used four genes from spiders in 37 huntsman genera to create the most ambitious genealogical tree yet of the family. Then Rayor turned to her decades of data to see what behaviors appeared on branches leading to lingering kids.

For instance, a form of egg sac called “plastered” — not drunk but spun like a firmly anchored splat on a surface of spider retreats — shows up in branches with the family-tolerant behavior, the researchers report in the September issue of Molecular Phylogenetics and Evolution.

Spiders spin various shapes of outer sacs that discourage egg raiders. Spiders in a fixed retreat can conveniently anchor a sac, unlike some other moms that carry eggs with them. Also the more spread-out, plastered form might — Rayor emphasizes this is speculation — fit better in tight crevices than the puffier throw-pillow styles of egg sacs would.

Delena spiderlings still carry abundant egg yolk with them when they clamber out of the egg sac. They don’t eat until after their first molt. “They’ve got these big, fat, green abdomens,” Rayor says. “They don’t have long legs, so they waddle.”

Once they molt, one benefit of this family lifestyle could be table scraps for the littles. Very young spiderlings are “ridiculously small,” Rayor says, and can handle food only about the size of a fruit fly. The chance to sneak extra shreds of meat from an older sib could greatly boost nutrition. Older sibs probably would rather not share, but Rayor sees “tolerated theft.”

Cute babies may not matter to a spider mom, but maybe they should to humans. Gorneau, once “very afraid of spiders,” wants to fight the stereotype of spiders as aggressive dangers. Rayor’s spiders strike him as “stoic,” mostly sitting quietly. Rayor’s lab full of spiders in their homes, he now finds, is a “calming environment.”

50 years ago, the dinosaurs’ demise was still a mystery 

Dinosaurs might have been endothermic, or warm-blooded…. The combination of large size, endothermy and naked skin may explain the extinction of dinosaurs. About 65 million years ago there was a sharp drop in temperature…. Dinosaurs, lacking skin insulation and too large to burrow underground … could not survive. Meanwhile, evidence has come that … the shells [of their eggs] became progressively thinner … too fragile to support the growing embryo.

Update
Some dinosaurs may have been warm-blooded and some could have laid soft-shelled eggs (SN: 7/12/14, p. 6). But neither trait led to the reptiles’ demise. In the late 1970s, geologists proposed that an asteroid strike triggered a mass extinction (1/25/92, p. 56), killing more than 75 percent of life on Earth. That theory is now widely accepted. Scientists have even found the killer’s calling card: a crater about 180 kilometers wide on the coast of the Yucatán Peninsula in Mexico. The asteroid probably crash landed there in the springtime 66 million years ago, fossils hint (SN: 3/26/22, p. 8).

Nobel laureate foresees mind-expanding future of physics

A century from now, when biologists are playing games of clones and engineers are playing games of drones, physicists will still pledge their loyalty to the Kingdoms of Substance and Force.

Physicists know the subjects of these kingdoms as fermions and bosons. Fermions are the fundamental particles of matter; bosons transmit forces that govern the behavior of the matter particles. The math describing these particles and their relationships forms the “standard model” of particle physics. Or as Nobel laureate Frank Wilczek calls it, “The Core Theory.”
Wilczek’s core theory differs from the usual notion of standard model. His core includes gravity, as described by Einstein’s general theory of relativity. General relativity is an exquisite theory of gravity, but it doesn’t fit in with the math for the standard model’s three forces (the strong and weak nuclear forces and electromagnetism). But maybe someday it will. Perhaps even by 100 years from now.

At least, that’s among the many predictions that Wilczek has made for the century ahead. In a recent paper titled “Physics in 100 Years,” he offers a forecast for future discoveries and inventions that science writers of the future will be salivating over. (The paper is based on a talk celebrating the 250th anniversary of Brown University. He was asked to make predictions for 250 years from now, but regarded 100 as more reasonable.)

Wilczek does not claim that his forecast will be accurate. He considers it more an exercise in imagination, anchored in thorough knowledge of today’s major questions and the latest advances in scientific techniques and capabilities. Where those two factors meet, Wilczek sees the potential for premonition. His ruminations result in a vision of the future suitable for a trilogy or two of science fiction films. They would involve the unification of the kingdoms of physics and a more intimate relationship between them and the human mind.

Among Wilczek’s prognostications is the discovery of supersymmetric particles, heavyweight partners to the matter and force particles of the Core Theory. Such partner particles would reveal a deep symmetry underlying matter and force, thereby combining the kingdoms and further promoting the idea of unification as a key path to truth about nature. Wilczek also foresees the discovery of proton decay, even though exhaustive searches for it have so far failed to find it. If protons disintegrate (after, on average, trillions upon trillions of years), matter as we know it has a limited lease on life. On the other hand, lack of finding proton decay has been a barrier to figuring out a theory that successfully unifies the math for all of nature’s particles and forces. And Wilczek predicts that:

The unification of gravity with the other forces will become more intimate, and have observable consequences.

He also anticipates that gravity waves will be observed and used to probe the physics of the distant (and early) universe; that the laws of physics, rather than emphasizing energy, will someday be rewritten in terms of “information and its transformations”; and that “biological memory, cognitive processing, motivation, and emotion will be understood at the molecular level.”

And all that’s just the beginning. He then assesses the implications of future advances in computing. Part of the coming computation revolution, he foresees, will focus on its use for doing science:

Calculation will increasingly replace experimentation in design of useful materials, catalysts, and drugs, leading to much greater efficiency and new opportunities for creativity.

Advanced calculational power will also be applied to understanding the atomic nucleus more precisely, conferring the ability…

to manipulate atomic nuclei dexterously … enabling (for example) ultradense energy storage and ultrahigh energy lasers.

Even more dramatically, computing power will be employed to enhance itself:

Capable three-dimensional, fault-tolerant, self-repairing computers will be developed.… Self-assembling, self-reproducing, and autonomously creative machines will be developed.

And those achievements will imply that:

Bootstrap engineering projects wherein machines, starting from crude raw materials, and with minimal human supervision, build other sophisticated machines (notably including titanic computers) will be underway.

Ultimately, such sophisticated computing machines will enable artificial intelligence that would even impress Harold Finch on Person of Interest (which is probably Edward Snowden’s favorite TV show).

Imagine, for instance, the ways that superpowerful computing could enhance the human senses. Aided by electronic prosthetics, people could experience the full continuous range of colors in the visible part of the electromagnetic spectrum, not just those accessible to the tricolor-sensitive human eye. Perhaps the beauty that physicists and mathematicians “see” in their equations can be transformed into works of art beamed directly into the brain.

Artificial intelligence endowed with such power would enable many other futuristic fantasies. As Wilczek notes, the “life of mind” could be altered in strange new ways. For one thing, computationally precise knowledge of a state of mind would permit new possibilities for manipulating it. “An entity capable of accurately recording its state could purposefully enter loops, to re-live especially enjoyable episodes,” Wilczek points out.

And if all that doesn’t sound weird enough, we haven’t even invoked quantum mechanics yet. Wilczek forecasts that large-scale quantum computers will be realized, in turn leading to “quantum artificial intelligence.”

“A quantum mind could experience a superposition of ‘mutually contradictory’ states, or allow different parts of its wave function to explore vastly different scenarios in parallel,” Wilczek points out. “Being based on reversible computation, such a mind could revisit the past at will, and could be equipped to superpose past and present.”

And with quantum artificial intelligence at its disposal, the human mind’s sensory tentacles will not merely be enhanced but also dispersed. With quantum communication, humans can be linked by quantum messaging to sensory devices at vast distances from their bodies. “An immersive experience of ‘being there’ will not necessarily involve being there, physically,” Wilczek writes. “This will be an important element of the expansion of human culture beyond Earth.”

In other words, it will be a web of intelligence, rather than a network of physical settlements, that will expand human culture throughout the cosmos. Such “expanded identities” will be able to comprehend the kingdoms of substance and force on their own quantum terms, as the mind itself merges with space and time.

Wilczek’s visions imply a future existence in which nature is viewed from a vastly different perspective, conditioned by a radical reorientation of the human mind to its world. And perhaps messing with the mind so drastically should be worrisome. But let’s not forget that the century gone by has also messed with the mind and its perspectives in profound ways — with television, for instance, talk radio, the Internet, smartphones and blogs. A little quantum computer mind manipulation is unlikely to make things any worse.

Bacteria staining method has long been misexplained

With delicate hues of purple and pink, a lab technique called gram staining has reliably characterized bacteria for more than a century. Yet many scientists are mistaken about why the vivid method works, new research finds.

Contrary to standard scientific texts, the purple dye called crystal violet, a main ingredient in gram staining, does not actually enter bacterial cells, researchers report April 27 in ACS Chemical Biology. Instead, the dye gets trapped in a tight package of sugar-filled polymers, called peptidoglycan, which envelops bacterial cells. The thickness and integrity of the sweet bacterial armor determines whether crystal violet leaves a cell purple or not. That royal shade, or lack of it, reveals a cell’s type of outer structure.
Published by Hans Christian Gram in 1884, gram staining distinguishes gram-positive bacteria (purple) from gram-negative bacteria (pink). Gram-positive critters, such as staph, have a thick peptidoglycan layer that shields an inner cellular membrane. Gram-negative cells, such as E. coli, have a thin peptidoglycan layer sandwiched between a porous outer membrane and an inner membrane.
Microbiologists thought that crystal violet could easily pass through membranes and into both cell types, says microbiologist Moselio Schaechter, an emeritus professor at Tufts University School of Medicine in Boston. A subsequent harsh shower of alcohol could then corrode both cell types’ membranes. This particularly clobbers gram-negative cells’ outer structures, including the thin layer of peptidoglycan which is bound to the outer membrane, allowing the purple dye to flush away. Meanwhile, gram-positive cells’ sturdier layer of peptidoglycan warps a bit but stays largely intact, keeping the microbes purple. The colorless gram-negative cells can then be stained with another dye, such as safranine, tinting the cells pink.

But that explanation is incorrect, says physical chemist Michael Wilhelm of Temple University in Philadelphia. Using a recently developed spectroscopy technique that monitors molecules as they traverse membranes, Wilhelm and colleagues found that crystal violet doesn’t cross the inner membrane of either cell type.

Instead, crystal violet seeps into the cracks of peptidoglycan, which acts like a “brick wall of sugar,” Wilhelm says. A gram-negative cell’s thin wall crumbles in the alcohol wash and releases the dye, he explains. In gram-positive cells, crystal violet slowly drains from the thick peptidoglycan barrier, but not quickly enough to leave the cell colorless during the protocol.

The study is fascinating, says microbiologist Rita Moyes of Texas A&M University in College Station. Scientists should continue to use new technologies to study old techniques, she says.

“Who’d have thought gram stain lecture material needed an update?” says microbiologist Mark Forsyth of the College of William & Mary in Williamsburg, Va. But, he says, “it may take a while to convince old professors like me to actually change their shtick about how this historic stain works.”

Editing human germline cells sparks ethics debate

Sci-fi novels and films like Gattaca no longer have a monopoly on genetically engineered humans. Real research scripts about editing the human genome are now appearing in scientific and medical journals. But the reviews are mixed.

In Gattaca, nearly everyone was genetically altered, their DNA adjusted to prevent disease, enhance intelligence and make them look good. Today, only people treated with gene therapy have genetically engineered DNA. But powerful new gene editing tools could expand the scope of DNA alteration, forever changing humans’ genetic destiny.

Not everyone thinks scientists should wield that power. Kindling the debate is a report by scientists from Sun Yat-sen University in Guangzhou, China, who have edited a gene in fertilized human eggs, called zygotes. The team used new gene editing technology known as the CRISPR/Cas9 system. That technology can precisely snip out a disease-causing mutation and replace it with healthy DNA. CRISPR/Cas9 has edited DNA in stem cells and cancer cells in humans. Researchers have also deployed the molecules to engineer other animals, including mice and monkeys (SN Online: 3/31/14; SN: 3/8/14, p. 7). But it had never before been used to alter human embryos.
The team’s results, reported April 18 in Protein & Cell, sparked a flurry of headlines because their experiment modified human germline tissue (SN Online: 4/23/15). While most people think it is all right to fix faulty genes in mature body, or somatic, cells, tinkering with the germ line — eggs, sperm or tissues that produce those reproductive cells — crosses an ethical line for many. Germline changes can be passed on to future generations, and critics worry that allowing genetic engineering to correct diseases in germline tissues could pave the way for creating designer babies or other abuses that will persist forever.

“How do you draw a clear, meaningful line between therapy and enhancement?” ponders Marcy Darnovsky, executive director of the Center for Genetics and Society in Berkeley, Calif. About 40 countries ban or restrict such inherited DNA modifications.

Rumors about human germline editing experiments prompted scientists to gather in January in Napa, Calif. Discussions there led two groups to publish recommendations. One group, reporting March 26 in Nature, called for scientists to “agree not to modify the DNA of human reproductive cells,” including the nonviable zygotes used in the Chinese study. A second group, writing in Science April 3, called for a moratorium on the clinical use of human germline engineering, but stopped short of saying the technology shouldn’t be used in research. Those researchers say that while CRISPR technology is still too primitive for safe use in patients, further research is needed to improve it. But those publishing in Nature disagreed.

“Are there ever any therapeutic uses that would demand … modification of the human germ line? We don’t think there are any,” says Edward Lanphier, president of Sangamo BioSciences in Richmond, Calif. “Modifying the germ line is crossing the line that most countries on our planet have said is never appropriate to cross.”

If germline editing is never going to be allowed, there is no reason to conduct research using human embryos or reproductive cells, he says. Sangamo BioSciences is developing gene editing tools for use in somatic cells, an approach that germline editing might render unneeded. Lanphier denies that financial interests play a role in his objection to germline editing.

Other researchers, including Harvard University geneticist George Church, think germline editing may well be the only solution for some people with rare, inherited diseases. “What people want is safety and efficacy,” says Church. “If you ban experiments aimed at improving safety and efficacy, we’ll never get there.”

The zygote experiments certainly demonstrate that CRISPR technology is not ready for daily use yet. The researchers attempted to edit the beta globin, or HBB, gene. Mutations in that gene cause the inherited blood disorder beta-thalassemia. CRISPR/Cas9 molecules were engineered to seek out HBB and cut it where a piece of single-stranded DNA could heal the breach, creating a copy of the gene without mutations. That strategy succeeded in only four of the 86 embryos that the researchers attempted to edit. Those edited embryos contained a mix of cells, some with the gene edited and some without.

In an additional seven embryos, the HBB gene cut was repaired using the nearby HBD gene instead of the single-stranded DNA. The researchers also found that the molecular scissors snipped other genes that the researchers never intended to touch.

“Taken together, our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR/Cas9 platform, a prerequisite for any clinical applications,” the researchers wrote.

The Chinese researchers crossed no ethical lines, Church contends. “They tried to dot i’s and cross t’s on the ethical questions.” The zygotes could not develop into a person, for instance: They had three sets of chromosomes, having been fertilized by two sperm in lab dishes.

Viable or not, germline cells should be off limits, says Darnovsky. She opposes all types of human germline modification, including a procedure approved in the United Kingdom in February for preventing mitochondrial diseases. The U.K. prohibits all other germline editing.

Mitochondria, the power plants that churn out energy in a cell, each carry a circle of DNA containing genes necessary for the organelle’s function. Mothers pass mitochondria on to their offspring through the egg. About one in 5,000 babies worldwide are born with mitochondrial DNA mutations that cause disease, particularly in energy-greedy organs such as the muscles, heart and brain.

Such diseases could be circumvented with a germline editing method known as mitochondrial replacement therapy (SN: 11/17/12, p. 5). In a procedure pioneered by scientists at Oregon Health & Science University, researchers first pluck the nucleus, where the bulk of genetic instructions for making a person are stored, out of the egg of a woman who carries mutant mitochondria. That nucleus is then inserted into a donor egg containing healthy mitochondria. The transfer would produce a person with three parents; most of their genes inherited from the mother and father, with mitochondrial DNA from the anonymous donor. The first babies produced through that technology could be born in the U.K. next year.

Yet another new gene-editing technique could eliminate the need to use donor eggs by specifically destroying only disease-carrying mitochondria, researchers from the Salk Institute for Biological Studies in La Jolla, Calif., reported April 23 in Cell (SN Online: 4/23/15).

Such unproven technologies shouldn’t be attempted when alternatives already exist, Darnovsky says, such as screening embryos created through in vitro fertilization and discarding those likely to develop the disease.

But banning genome-altering technology could leave people with genetic diseases, and society in general, in the lurch, says molecular biologist Matthew Porteus of Stanford University.

“There is no benefit in my mind of having a child born with a devastating genetic disease,” he says.

Alternatives to germline editing come with their own ethical quandaries, he says. Gene testing of embryos may require creating a dozen or more embryos before finding one that doesn’t carry the disease. The rest of the embryos would be destroyed. Many people find that prospect ethically questionable.

But that doesn’t argue for sliding into Gattaca territory, where genetic modification becomes mandatory. “If we get there,” says Porteus, “we’ve really screwed up.”

A fast radio burst’s rapid, steady beat offers a clue to its cosmic origin

An unusual blast of radio waves from deep space had a sense of rhythm. Over the few seconds in December 2019 when the burst was detected, it kept a steady beat. That tempo holds clues to the potential origin of the mysterious outburst, one of a class of flares called fast radio bursts.

Of the hundreds of previously detected fast radio bursts, most last for mere milliseconds. But this one persisted for roughly three seconds, Daniele Michilli and colleagues report in the July 14 Nature. The burst consisted of multiple brief pulses, repeating about every two-tenths of a second.
Scientists have previously observed fast radio bursts that repeat with a delay of minutes or days (SN: 3/2/16). “With this one it was a train of [pulses] one after the other, a heartbeat, like, ‘boom boom boom boom,’” says Michilli, an astronomer at MIT.

That makes this fast radio burst very special, says astrophysicist Bing Zhang of the University of Nevada, Las Vegas, who was not involved with the research. Compared with other fast radio bursts, “this is a different animal.”

Scientists still don’t know how fast radio bursts are generated, but evidence has been building that they are associated with ultradense, spinning dead stars called neutron stars and, in particular, highly magnetic neutron stars called magnetars (SN: 6/4/20).

The steady repetition rate hints at what may have caused this particular blast, discovered by the Canadian Hydrogen Intensity Mapping Experiment, a radio telescope in British Columbia.

Only certain types of cosmic processes produce such metronome-like signals. Neutron stars, for example, can appear to pulse as they spin, because they emit beams of radio waves that can sweep past Earth at regular intervals. Neutron stars tend to have tempos similar to that of the pulsating fast radio burst. But that burst was much more luminous than normal neutron star pulses, suggesting some unknown process would need to have amped up the emission.

Another idea is that large outbursts on magnetars could cause starquakes that jostle those stars’ solid crusts, generating regular barrages of radio waves. The rhythmic burst’s pulsing “is sort of consistent with a frequency with which we expect that magnetars could be shaking,” says astrophysicist Cecilia Chirenti of the University of Maryland in College Park, who was not involved with the new study.

Or the pulsing might result from two neutron stars that orbit one another. Outbursts could occur at regular points in that orbit, when the magnetic regions that surround each neutron star interact.

Scientists don’t know if all fast radio bursts are generated in the same way. An outlier like this one might have a different origin story than a more standard, one-off blast. That means it’s hard to make conclusions about other fast radio bursts, Zhang says. “Whatever we can derive from this one, I would not easily extrapolate to the other guys.”

Do gophers farm roots? It’s not as clear as viral articles claim

Pocket gophers certainly don’t qualify as card-carrying 4-H members, but the rodents might be farming roots in the open air of their moist, nutrient-rich tunnels.

The gophers subsist mostly on roots encountered in the tunnels that the rodents excavate. But the local terrain doesn’t always provide enough roots to sustain gophers, two researchers report in the July 11 Current Biology. To make up the deficit, the gophers practice a simple type of agriculture by creating conditions that promote more root growth, suggest ecologist Jack Putz of the University of Florida in Gainesville and his former zoology undergraduate student Veronica Selden.
But some scientists think it’s a stretch to call the rodents’ activity farming. Gophers aren’t actively working the soil, these researchers say, but inadvertently altering the environment as the rodents eat and poop their way around — much like all animals do.

Tunnel digging takes a lot of energy — up to 3,400 times as much as walking along the surface for gophers. To see how the critters were getting all this energy, Selden and Putz in 2021 began investigating the tunnels of southeastern pocket gophers (Geomys pinetis) in an area being restored to longleaf pine savanna in Florida that Putz partially owns.

The pair took root samples from soil adjacent to 12 gopher tunnels and extrapolated how much root mass a gopher would encounter as it excavated a meter of tunnel. Then the researchers calculated the amount of energy that those roots would provide.

“We were able to compare energy cost versus gain, and found that on average there is a deficit, with about half the cost of digging being unaccounted for,” Selden says.

Upon examining some tunnels, Selden and Putz saw gopher feces spread through the interior along with signs of little bites taken out of roots and churning of the soil.

The gophers, the researchers conclude, provide conditions that favor root growth by spreading their own waste as fertilizer, aerating the soil and repeatedly nibbling on roots to encourage new sprouting.
“All of these activities encourage root growth, and once the roots grow into the tunnels, the gophers crop the roots,” Selden says. She and Putz say that this amounts to a rudimentary form of farming. If so, gophers would be the first nonhuman mammals to be recognized as farmers, Putz says. Other organisms, such as some insects, also farm food and started doing so much earlier than humans (SN: 4/23/20).

But the study has its skeptics. “I don’t really think you can call it farming per the human definition. All herbivores eat plants, and everybody poops,” says J.T. Pynne, a wildlife biologist at the Georgia Wildlife Federation in Covington who studies southeastern pocket gophers. So the root nibbling and tunnel feces might not be signs of agriculture, just gophers doing what all animals do.

Evolutionary biologist Ulrich Mueller agrees. “If we accept the tenuous evidence presented in the Selden article as evidence for farming … then most mammals and most birds are farmers because each of them accidentally have also some beneficial effects on some plants that these mammals or birds also feed on,” he says.

Not only that, but the study is also dangerous, says Mueller, of the University of Texas at Austin. The public will see through “the shallowness of the data,” he says, and will conclude that science is “just a bunch of storytelling, eroding general trust in science.”

For her part, Selden says she understands that because gophers don’t plant their crops, not everyone is comfortable calling them farmers. Still, she argues that “what qualifies the gophers as farmers and sets them apart from, say, cattle, which incidentally fertilize the grass they eat with their wastes, is that gophers cultivate and maintain this ideal environment for roots to grow into.”

At the very least, Putz says, he hopes their research makes people kinder toward the rodents. “If you go to the web and put in ‘pocket gopher,’ you’ll see more ways to kill them than you can count.”

In the battle of human vs. water, ‘Water Always Wins’

Humans have long tried to wrangle water. We’ve straightened once-meandering rivers for shipping purposes. We’ve constructed levees along rivers and lakes to protect people from flooding. We’ve erected entire cities on drained and filled-in wetlands. We’ve built dams on rivers to hoard water for later use.

“Water seems malleable, cooperative, willing to flow where we direct it,” environmental journalist Erica Gies writes in Water Always Wins. But it’s not, she argues.

Levees, which narrow channels causing water to flow higher and faster, nearly always break. Cities on former wetlands flood regularly — often catastrophically. Dams starve downstream environs of sediment needed to protect coastal areas against rising seas. Straightened streams flow faster than meandering ones, scouring away riverbed ecosystems and giving water less time to seep downward and replenish groundwater supplies.

In addition to laying out this damage done by supposed water control, Gies takes readers on a hopeful global tour of solutions to these woes. Along the way, she introduces “water detectives”— scientists, engineers, urban planners and many others who, instead of trying to control water, ask: What does water want?
These water detectives have found ways to give the slippery substance the time and space it needs to trickle underground. Around Seattle’s Thornton Creek, for instance, reclaimed land now allows for regular flooding, which has rejuvenated depleted riverbed habitat and created an urban oasis. In California’s Central Valley, scientists want to find ways to shunt unpolluted stormwater into ancient, sediment-filled subsurface canyons that make ideal aquifers. Feeding groundwater supplies will in turn nourish rivers from below, helping to maintain water levels and ecosystems.

While some people are exploring new ways to manage water, others are leaning on ancestral knowledge. Without the use of hydrologic mapping tools, Indigenous peoples of the Andes have a detailed understanding of the plumbing that links surface waters with underground storage. Researchers in Peru are now studying Indigenous methods of water storage, which don’t require dams, in hopes of ensuring a steady flow of water to Lima — Peru’s populous capital that’s periodically afflicted by water scarcity. These studies may help convince those steeped in concrete-centric solutions to try something new. “Decision makers come from a culture of concrete,” Gies writes, in which dams, pipes and desalination plants are standard.

Understanding how to work with, not against, water will help humankind weather this age of drought and deluge that’s being exacerbated by climate change. Controlling water, Gies convincingly argues, is an illusion. Instead, we must learn to live within our water means because water will undoubtedly win.

This pitcher plant species sets its deathtraps underground

Biologist Martin Dančák didn’t set out to find a plant species new to science. But on a hike through a rainforest in Borneo, he and colleagues stumbled on a subterranean surprise.

Hidden beneath the soil and inside dark, mossy pockets below tree roots, carnivorous pitcher plants dangled their deathtraps underground. The pitchers can look like hollow eggplants and probably lure unsuspecting prey into their sewer hole-like traps. Once an ant or a beetle steps in, the insect falls to its death, drowning in a stew of digestive juices (SN: 11/22/16). Until now, scientists had never observed pitcher plants with traps almost exclusively entombed in earth.
“We were, of course, astonished as nobody would expect that a pitcher plant with underground traps could exist,” says Dančák, of Palacký University in Olomouc, Czech Republic.

That’s because pitchers tend to be fragile. But the new species’ hidden traps have fleshy walls that may help them push against soil as they grow underground, Dančák and colleagues report June 23 in PhytoKeys. Because the buried pitchers stay concealed from sight, the team named the species Nepenthes pudica, a nod to the Latin word for bashful.

The work “highlights how much biodiversity still exists that we haven’t fully discovered,” says Leonora Bittleston, a biologist at Boise State University in Idaho who was not involved with the study. It’s possible that other pitcher plant species may have traps lurking underground and scientists just haven’t noticed yet, she says. “I think a lot of people don’t really dig down.”

A supersensitive dark matter search found no signs of the substance — yet

The next generation of dark matter detectors has arrived.

A massive new effort to detect the elusive substance has reported its first results. Following a time-honored tradition of dark matter hunters, the experiment, called LZ, didn’t find dark matter. But it has done that better than ever before, physicists report July 7 in a virtual webinar and a paper posted on LZ’s website. And with several additional years of data-taking planned from LZ and other experiments like it, physicists are hopeful they’ll finally get a glimpse of dark matter.
“Dark matter remains one of the biggest mysteries in particle physics today,” LZ spokesperson Hugh Lippincott, a physicist at the University of California, Santa Barbara said during the webinar.

LZ, or LUX-ZEPLIN, aims to discover the unidentified particles that are thought to make up most of the universe’s matter. Although no one has ever conclusively detected a particle of dark matter, its influence on the universe can be seen in the motions of stars and galaxies, and via other cosmic observations (SN: 7/24/18).

Located about 1.5 kilometers underground at the Sanford Underground Research Facility in Lead, S.D., the detector is filled with 10 metric tons of liquid xenon. If dark matter particles crash into the nuclei of any of those xenon atoms, they would produce flashes of light that the detector would pick up.

The LZ experiment is one of a new generation of bigger, badder dark matter detectors based on liquid xenon, which also includes XENONnT in Gran Sasso National Laboratory in Italy and PandaX-4T in the China Jinping Underground Laboratory. The experiments aim to detect a theorized type of dark matter called Weakly Interacting Massive Particles, or WIMPs (SN: 12/13/16). Scientists scaled up the search to allow for a better chance of spying the particles, with each detector containing multiple tons of liquid xenon.

Using only about 60 days’ worth of data, LZ has already surpassed earlier efforts to pin down WIMPs (SN: 5/28/18). “It’s really impressive what they’ve been able to pull off; it’s a technological marvel,” says theoretical physicist Dan Hooper of Fermilab in Batavia, Ill, who was not involved with the study.

Although LZ’s search came up empty, “the way something’s going to be discovered is when you have multiple years in a row of running,” says LZ collaborator Matthew Szydagis, a physicist at the University at Albany in New York. LZ is expected to run for about five years, and data from that extended period may provide physicists’ best chance to find the particles.

Now that the detector has proven its potential, says LZ physicist Kevin Lesko of Lawrence Berkeley National Laboratory in California, “we’re excited about what we’re going to see.”