Readers question hominid family tree

Hominid hubbub
In “Hominid roots may go back to Europe” (SN: 6/24/17, p. 9), Bruce Bower reported that the teeth of Graecopithecus, a chimp-sized primate that lived in southeastern Europe 7 million years ago, suggest it was a member of the human evolutionary family.

“Is it appropriate to use the terms ‘hominid’ and ‘ape’ as if the two are mutually exclusive categories?” asked online reader Tim Cliffe. “The distinction being made is between our clade in particular and all other apes. It seems to me that ‘hominids’ should be described as a subset of apes, not a separate category,” he wrote.
“Yes, hominids are apes,” Bower says. “The terminology gets pretty thick in evolutionary studies, so researchers (and journalists) use some shortcuts.”

Fossils of many ancient apes dating to between 25 million and 5 million years ago have been found, but the interest in this case is in a key transition to a particular kind of ape that walked upright and displayed various skeletal traits similar to traits unique to the human evolutionary family. “That’s why one source in the story, Bernard Wood, wonders whether Graecopithecus was an apelike hominid or a hominid-like ape,” Bower says. “But it’s important to remember that hominids diverged from other, ancestral apes. So did chimps.”

Science News defines “hominid” as a member of the human evolutionary family.

Laser, camera, action
The world’s fastest video camera films 5 trillion frames every second, Ashley Yeager reported in “A different kind of camera captures speedy actions” (SN: 6/24/17, p. 5). The camera works by flashing a laser at a subject and using a computer program to combine the still images into a video. Researchers tested the device by filming particles of light as the particles traveled a short distance.

Online reader JHoughton1 wondered if the researchers really filmed a light particle in their tests. “I thought light ‘sometimes behaves like a wave, sometimes like a particle,’ but that there isn’t really any particle that’s a particle in the usual sense. Is this really a picture of a ‘particle’ of light? A photon-as-ball-of-stuff?”

The camera captured the forward progression of a laser pulse, which is an ensemble of photons, Yeager says.

Photons themselves aren’t “balls of stuff” on quantum scales, says physics writer Emily Conover. All particles, including photons, are spread out in space, propagating like waves. “Only when scientists measure or observe a photon or any other particle do they find it in one place, like the ball of stuff that people typically imagine. I think in that sense, photons are about as tangible as any other quantum particle,” Conover says.

Bringing down the mucus house
Little-known sea animals called giant larvaceans can catch a lot of carbon in disposable mucus casings called “houses,” Susan Milius reported in “ ‘Mucus houses’ catch sea carbon fast” (SN: 6/10/17, p. 13).

Online reader Robert Stenton wondered what happens to mucus houses as they fall to the bottom of the ocean.

What happens to discarded houses isn’t yet clear, Milius says, though researchers have proposed that the houses might carry substantial portions of carbon to life on the sea bottom. And if bits of a house fall fast enough to reach great depths, the carbon could get trapped in water masses that move around the planet for centuries before surfacing. Bits drifting down slowly may be intercepted by microbes and other debris feeders and would not end up sequestered.

Correction
In “Human noises invade wilderness” (SN: 6/10/17, p. 14), Science News incorrectly reported that official wilderness areas in the United States do not allow livestock grazing. Grazing is permitted in protected wilderness areas at preprotection levels under the Wilderness Act of 1964, which created the National Preservation System.

Giant armored dinosaur may have cloaked itself in camouflage

Sometimes body armor just isn’t enough. A car-sized dinosaur covered in bony plates may have sported camo, too, researchers report online August 3 in Current Biology. That could mean the Cretaceous-period herbivore was a target for predators that relied on sight more than smell to find prey.

The dinosaur, dubbed Borealopelta markmitchelli, has already made headlines for being one of the best preserved armored dinosaurs ever unearthed. It was entombed on its back some 110 million years ago under layers of fine marine sediments that buried the animal very quickly — ideal preservation conditions, says study coauthor Caleb Brown, a paleontologist at the Royal Tyrrell Museum of Palaeontology in Drumheller, Canada. The fossil, found in Alberta in 2011, captured not only large amounts of skin and soft tissue but also the animal’s three-dimensional shape.
“Most of the other armored dinosaurs are described based on the skeleton. In this case, we can’t see the skeleton because all the skin is still there,” Brown says.

That skin contains clues to the dinosaur’s appearance, including its coloration. “We’re just beginning to realize how important color is, and we’re beginning to have the methods to detect color” in fossils, says Martin Sander, a paleontologist at Bonn University in Germany who wasn’t part of the study.

But despite ample tissue, the researchers didn’t find any melanosomes, cellular structures that often preserve evidence of pigment in fossilized remains. Instead, Brown and colleagues turned to less direct evidence: molecules that appear when pigments break down. The researchers found about a dozen types of those molecules, including substantial amounts of benzothiazole, a by-product of the reddish pigment pheomelanin. That might mean the dinosaur was reddish-brown.
The distribution of pigment by-products also gives clues about the dinosaur’s appearance. B. markmitchelli had a thin film of pigment-hinting organic molecules on its back, but that layer disappeared on the belly. That pattern is reminiscent of countershading, when an animal is darker on its back than its underside, Brown says. Countershading is a simple form of camouflage that helps animals blend in with the ground when seen from above or with the sky when seen from below.
This is not the first time countershading has been proposed for a dinosaur (SN: 11/26/16, p 24). But finding the camouflage on such a large herbivore is somewhat surprising, Brown says. Modern plant eaters that don similar camouflage tend to be smaller and at greater risk of becoming someone’s dinner. B. markmitchelli’s skin patterning suggests that at least some top Cretaceous predators might have relied more on eyesight than today’s top carnivores, which often favor smell when hunting, Brown says.

Some experts, however, want stronger evidence for the coloration claims. Molecules like benzothiazole can come from melanin, but they can also come from a number of other sources, such as oils, says Johan Lindgren, a paleontologist at Lund University in Sweden. “What this paper nicely highlights is how little we actually know about the preservation of soft tissues in animal remains. There’s definitely something there — the question is, what are those [molecules], and where do they come from?”

Sander does buy the evidence for the reddish tint, but it might not be the full story, he says. The dino could have displayed other colors that didn’t linger in the fossil record. But the countershading findings “point out the importance of vision” for dinosaurs, he says. Sharp-eyed predators might have made camouflage a perk for herbivores — even ones built like tanks.

A mutation may explain the sudden rise in birth defects from Zika

A single genetic mutation made the Zika virus far more dangerous by enhancing its ability to kill nerve cells in developing brains, a new study suggests.

The small change — which tweaks just one amino acid in a protein that helps Zika exit cells — may cause microcephaly, researchers report September 28 in Science. The mutation arose around May 2013, shortly before a Zika outbreak in French Polynesia, the researchers calculate.

Zika virus was discovered decades ago but wasn’t associated with microcephaly — a birth defect characterized by a small head and brain — until the 2015–2016 outbreak in Brazil. Women who had contracted the virus while pregnant started giving birth to babies with the condition at higher-than-usual rates (SN: 4/2/16, p. 26).
Researchers weren’t sure why microcephaly suddenly became a complication of Zika infections, says Pei-Yong Shi, a virologist at the University of Texas Medical Branch at Galveston. Maybe the virus did cause microcephaly before, scientists suggested, but at such low rates that no one noticed. Or people in South America might be more vulnerable to the virus. Perhaps their immune systems don’t know how to fight it, they have a genetic susceptibility or prior infections with dengue made Zika worse (SN: 4/29/17, p. 14). But Shi and colleagues in China thought the problem might be linked to changes in the virus itself.
The researchers compared a strain of Zika isolated from a patient in Cambodia in 2010 with three Zika strains collected from patients who contracted the virus in Venezuela, Samoa and Martinique during the epidemic of 2015–2016. The team found seven differences between the Cambodian virus and the three epidemic strains.

Researchers engineered seven versions of the Cambodian virus, each with one of the epidemic strains’ mutations, and injected the viruses into fetal mouse brains. Viruses with one of these mutations, dubbed S139N, killed brain cells in fetal mice and destroyed human brain cells grown in lab dishes more aggressively than the Cambodian strain from 2010 did, the researchers found.
“That’s pretty convincing evidence that it at least plays some role in what we’re seeing now,” says Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases.

The mutation changes an amino acid in a Zika protein called prM. That protein helps the virus mature within infected cells and get out of the cells to infect others. Shi and colleagues don’t yet know why tweaking the protein makes the virus kill brain cells more readily.

The alteration in that protein probably isn’t the entire reason epidemic strains cause microcephaly, Shi says. The Cambodian strain also led to the death of a few brain cells, but perhaps not enough to cause microcephaly. “We believe there are other changes in the virus that collectively enhance its virulence,” he says. In May in Nature, Shi and colleagues described a different mutation that allows the virus to infect mosquitoes more effectively.

Brain cells from different people vary in their susceptibility to Zika infections, says infectious disease researcher Scott Weaver, also at the University of Texas Medical Branch but not involved in the study. He says more work on human cells and in nonhuman primates is needed to confirm whether this mutation is really the culprit in microcephaly.

Climate foiled Europeans’ early exploration of North America

Many people may be fuzzy on the details of North America’s colonial history between Columbus’ arrival in 1492 and the Pilgrims’ landing on Plymouth Rock in 1620. But Europeans were actively attempting to colonize North America from the early 16th century onward, even though few colonies survived.

As historian Sam White explains in A Cold Welcome, most early attempts were doomed by fatally incorrect assumptions about geography and climate, poor planning and bad timing.
White weaves together evidence of past climates and written historical records in a comprehensive narrative of these failures. One contributing factor: Explorers assumed climates at the same latitude were the same worldwide. But in fact, ocean currents play a huge role in moderating land temperatures, which means Western Europe is warmer and less variable in temperature from season to season than eastern North America at the same latitude.

On top of that, explorations occurred during a time of global cooling known as the Little Ice Age, which stretched from the 13th to early 20th centuries. The height of exploration may have occurred at the peak of cooling: Starting in the late 16th century, a series of volcanic eruptions likely chilled the Northern Hemisphere by as much as 1.8 degrees Celsius below the long-term average, White says.

This cooling gave Europeans an especially distorted impression of their new lands. For instance, not long after Spanish explorer Sebastián Vizcaíno landed in California’s Monterey Bay in December 1602, men’s water jugs froze overnight — an unlikely scenario today. Weather dissuaded Spain from further attempts at colonizing California for over a century.
Harsh weather also heightened conflict when underprepared Europeans met Native Americans, whose own resources were stretched thin by unexpectedly bad growing seasons.

A Cold Welcome is organized largely by colonial power, which means findings on climate are repeated in each chapter. But White’s synthesis of climate and history is novel, and readers will see echoes of today’s ignorance about the local consequences of climate change. “Human psychology may be both too quick to grasp at false patterns and yet too slow to let go of familiar expectations,” White writes.

Buy A Cold Welcome from Amazon.com. Science News is a participant in the Amazon Services LLC Associates Program. Please see our FAQ for more details.

Once settled, immigrants play important guard roles in mongoose packs

Immigrants, they get the job done — eventually. Among dwarf mongooses, it takes newcomers a bit to settle into a pack. But once these immigrants become established residents, everyone in the pack profits, researchers from the University of Bristol in England report online December 4 in Current Biology.

Dwarf mongooses (Helogale parvula) live in groups of around 10, with a pecking order. The alphas — a top male and female — get breeding priority, while the others help with such group activities as babysitting and guard duty. But the road to the top of the social hierarchy is linear and sometimes crowded. So some individuals skip out on the group they were born into to find one with fewer members of their sex with which to compete —“effectively ‘skipping the queue,’” says ecologist Julie Kern.
Kern and her colleague Andrew Radford tracked mongoose immigration among nine packs at Sorabi Rock Lodge Reserve in Limpopo, South Africa. The researchers focused on guard duty, in which sentinels watch for predators and warn foragers digging for food.

Dwarf mongoose packs gain about one member a year. Among pack animals, higher group numbers are thought to come with the benefit of better access to shared social information like the approach of prowling predators. But upon arrival, new individuals are less likely to pitch in and serve as sentinels, Kern and Radford found. One possible reason: Immigrants lose weight during their transition from one pack to another and may not have the energy required for guard duty.
Pack residents don’t exactly put out a welcome mat for strangers, either. On the rare occasions when newcomers take a guard shift, residents tend to ignore their warning calls. Newbies may be seen as less reliable guards, or packs may have signature alarm calls that immigrants must learn. But after five months, these immigrants have come far. “Given time to recuperate following dispersal and a period of integration,” Kern says, “they contribute equally to their new group.”

How science and society crossed paths in 2017

Science came out of the lab and touched people’s lives in some awe-inspiring and alarming ways in 2017. Science enthusiasts gathered to celebrate a total solar eclipse, but also to march on behalf of evidence-based policy making. Meanwhile, deadly natural disasters revealed the strengths and limitations of science. Here’s a closer look at some of the top science events of the year.

Great American Eclipse
On August 21, many Americans witnessed their first total solar eclipse, dubbed the “Great American Eclipse.” Its path of totality stretched across the United States, passing through 14 states — with other states seeing a partial eclipse. This was the first total solar eclipse visible from the mainland United States since 1979, and the first to pass from coast to coast since 1918 (SN: 8/20/16, p. 14).
As people donned protective glasses to watch, scientists used telescopes, spectrometers, radio receivers and even cameras aboard balloons and research jets in hopes of answering lingering questions about the sun, Earth’s atmosphere and the solar system. One of the biggest: Why is the solar atmosphere so much hotter than the sun’s surface (SN Online: 8/20/17)? Data collected during the event may soon provide new insights.

March for Science
On April 22, Earth Day, more than 1 million people in over 600 cities around the world marched to defend science’s role in society. Called the first-ever March for Science, the main event was in Washington, D.C. Featured speakers included Denis Hayes, coordinator of the first Earth Day in 1970, and science advocate Bill Nye (SN Online: 4/22/17). Attendees advocated for government funding for scientific research and acceptance of the scientific evidence on climate change.

The march came on the heels of the Trump administration’s first budget proposal, released in March, which called for cutting federal science spending in fiscal year 2018 (SN: 4/15/17, p. 15). Some scientists worried that being involved with the march painted science in a partisan light, but others said science has always been political since scientists are people with their own values and opinions (SN Online: 4/19/17).

Climate deal announcement
On June 1, President Donald Trump announced that the United States would pull out of the Paris climate accord (SN Online: 6/1/17) — an agreement the United States and nearly 200 other countries signed in 2015 pledging to curb greenhouse gas emissions to combat global warming. With the announcement, Trump made good on one of his campaign promises. He said during a news conference that the agreement “is less about the climate and more about other countries gaining a financial advantage over the United States.”

Nicaragua and Syria signed on to the agreement in late 2017. A withdrawal from the United States would leave it as the only United Nations–recognized country to reject the global pact. President Trump left the door open for the United States to stay in the climate deal under revised terms. A U.S. climate assessment released in November by 13 federal agencies said it is “extremely likely” that humans are driving warming on Earth (SN Online: 11/3/17). Whether that report — the final version of which is due to be released in 2018 — will have an impact on U.S. involvement in the global accord remains to be seen.

North Korea nuclear test
On September 3, North Korea reported testing a hydrogen bomb, its sixth confirmed nuclear detonation, within a mountain at Punggye-ri. That test, along with the launch of intercontinental ballistic missiles this year, increased hostilities between North Korea and other nations, raising fears of nuclear war. As a result of these tests, the United Nations Security Council passed a resolution strengthening sanctions against North Korea to discourage the country from more nuclear testing.

As the international community waits to see what’s next, scientists continue to study the seismic waves that result from underground explosions in North Korea. These studies can help reveal the location, depth and strength of a blast (SN: 8/5/17, p. 18).

Natural disasters
The 2017 Atlantic hurricane season saw hurricanes Harvey, Irma and Maria devastate areas of Texas, Florida and the Caribbean. More than 200 people died from these three massive storms, and preliminary estimates of damage are as high as hundreds of billions of dollars. The National Oceanic and Atmospheric Administration had predicted that the 2017 season could be extreme, thanks to above-normal sea surface temperatures. The storms offered scientists an opportunity to test new technologies that might save lives by improving forecasting (SN Online: 9/21/17) and by determining the severity of flooding in affected regions (SN Online: 9/12/17).

In addition to these deadly storms, two major earthquakes rocked Mexico in September, killing more than 400 people. More than 500 died when a magnitude 7.3 earthquake shook Iran and Iraq in November. And wildfires raged across the western United States in late summer and fall. In California, fires spread quickly thanks to record summer heat and high winds. At least 40 people died and many more were hospitalized in California’s October fires. Rising global temperatures and worsening droughts are making wildfire seasons worldwide last longer on average than in the past, researchers have found (SN Online: 7/15/15).

Tiny trackers reveal the secret lives of young sea turtles

Not so long ago, the lives of sea turtles were largely a mystery. From the time that hatchlings left the beaches where they were born to waddle into the ocean until females returned to lay their eggs, no one really knew where the turtles went or what they did.

Then researchers started attaching satellite trackers to young turtles. And that’s when scientists discovered that the turtles aren’t just passive ocean drifters; they actively swim at least some of the time.
Now scientists have used tracking technology to get some clues about where South Atlantic loggerhead turtles go. And it turns out that those turtles are traveling to some unexpected places.

Katherine Mansfield, a marine scientist and turtle biologist at the University of Central Florida in Orlando, and colleagues put 19 solar-powered satellite tags on young (less than a year old), lab-reared loggerhead sea turtles. The turtles were then let loose into the ocean off the coast of Brazil at various times during the hatching season, between November 2011 and April 2012.

The tags get applied to the turtles in several steps. Turtle shells are made of keratin, like your fingernails, and this flakes off and changes shape as a turtle grows. Mansfield’s team had figured out, thanks to a handy tip from a manicurist, that a base layer of manicure acrylic deals with the flaking. And then some strips of neoprene along with aquarium silicone attach the tag to the shell. With all that prep, the tag can stay on for months. The tags transmit while a turtle is at the water’s surface. A loss of the signal indicates that either the tag has fallen off and sunken into the water, “or something ate the turtle,” Mansfield says.
The trackers revealed that not all Brazilian loggerhead sea turtles stay in the South Atlantic. Turtles released in the early- to mid-hatching season stay in southern waters. But then the off-coast currents change direction, which brings later-season turtles north, across the equator. Their trajectories could take them as far as the Caribbean, the Gulf of Mexico or even farther north, which would explain genetic evidence of mixing between southern and northern loggerhead populations. And it may help to make the species, which is endangered, more resilient in the face of environmental and human threats, the researchers conclude December 6 in the Proceedings of the Royal Society B.

But, Mansfield cautions, “these are just a handful of satellite tracks for a handful of turtles off the coast of Brazil.” She and other scientists “are just starting to build a story” about what happens to these turtles out in the ocean. “There’s still so much we don’t know,” she says.

Mansfield hopes the tracking data will help researchers figure out where the young turtles can be found out in the open ocean so scientists can catch, tag and track wild turtles. And there’s a need for even tinier tags that can be attached to newly hatched turtles to see exactly where they go and how many actually survive those first vulnerable weeks and months at sea. Eventually, Mansfield would like to have enough data to make comparisons between sea turtle species.

“The more we’re tracking, the more we’re studying them, we’re starting to realize [the turtles] behave differently than we’ve historically assumed,” Mansfield says.

Robot fish shows how the deepest vertebrate in the sea takes the pressure

It’s like having “an elephant stand on your thumb.”

That’s how deep-sea physiologist and ecologist Mackenzie Gerringer describes the pressure squeezing down on the deepest known living fish, some 8 kilometers down. What may help these small, pale Mariana snailfish survive elephantine squashing, says Gerringer of the University of Washington’s Friday Harbor Labs, is a body bulked up, especially at the rump, with a watery goo.

The snailfish family gets its nickname from the way some shallow-water species in thundering tides grip a rock with a little suction cup on the belly and curl up. “Quite cute,” Gerringer says, and maybe, if you squint, somewhat like a snail.
She and colleagues discovered the deepest fish in 2014 in the western Pacific Ocean’s Mariana Trench and described the newly named Psuedoliparis swirei November 28 in Zootaxa. To catch specimens, Gerringer and colleagues turned to extreme trapping. They weighted a boxy, mesh-sided trap with steel plates to sink it. It took about four hours to fall to the bottom.

The scientists baited traps with mackerel, which snailfish don’t eat. But the fish do eat the underwater amphipods that mob a mackerel feast. Remotely related to harmless garden pill bugs, trench amphipods clean mackerel to the bones, Gerringer says. “I certainly wouldn’t swallow a live amphipod after seeing what they can do.” A snailfish, however, has a second set of jaws at the back of its throat that render crustaceans safe to swallow.

Story continues below image
For animals that live in such extreme pressures and temperatures (1° or 2° Celsius), snailfish don’t “look very robust … or very armored,” she says. “You can actually see the brain through the skull.”

Skimping on dense muscles and bones may improve snailfish buoyancy and save energy. These fish also lack air pockets that give a little lift to some other fishes, but that would get squashed to nothing so far down. Instead, the snailfish have inner deposits of a watery goo, more buoyant than muscles and bones and less compressible than air.

The goo also may aid swimming efficiency by offering a cheap shape improvement, Gerringer and colleagues proposed December 6 in Royal Society Open Science. To test the idea, she 3-D printed and motorized a robo-snailfish. Easier than catching a real one, Gerringer says.

A latex sleeve around the robot tail let her add or subtract water as an approximation of the gelatinous tissue. With an empty sleeve, the wide fish body pinches in to a thin tail, inviting vortices that cause drag. With this abrupt narrowing, robo-swimming proved a struggle. Filling the tail-sleeve to create a tapering rear let the robo-snailfish swim faster.

This goo is cheap tissue to grow, Gerringer says. It’s mostly water, one thing a fish living underneath eight kilometers of ocean has in abundance.

Fast radio bursts may be from a neutron star orbiting a black hole

OXON HILL, Md. — Fast radio bursts could come from a turbulent home. At least one source of these bright, brief blasts of radio energy may be a young neutron star assisted by a nearby massive black hole, new research suggests.

“The biggest mystery around fast radio bursts is how such powerful and short-duration bursts are emitted,” says astronomer Daniele Michilli of the University of Amsterdam. The latest observations, reported online January 10 in Nature and at a meeting of the American Astronomical Society, suggest the bursts are coming from an environment with an unusually strong magnetic field. That field leaves a signature mark on the radio waves, twisting them into spirals, Michilli and his colleagues report.
Only a few fast radio bursts have ever been detected, and most appear as one-off events. Few known processes in the universe can explain them. But one burst, FRB 121102, has been seen repeating over the past decade or so (SN Online: 12/21/16). That repetition let astronomers follow up on the burst, and track it to a dwarf galaxy some 2.5 billion light-years away (SN: 2/4/17, p. 10).

Now, Michilli and his colleagues have used the Arecibo radio telescope in Puerto Rico to show that the burst’s source is embedded in an extremely strong magnetic field, 200 times stronger than the average magnetic field in the Milky Way.

The team measured the radio waves from 16 distinct bursts over three two-hour observational runs spanning several months. The bursts were exceptionally brief, the shortest lasting just 30 microseconds. That means that whatever emitted it must be just 10 kilometers wide, Michilli says.

“To emit a short burst you need a small region,” he says. “Therefore compact objects such as neutron stars are strongly favored by this result.”
The team also analyzed the radio waves in a new way, revealing that what looked like individual bursts were actually composed of many smaller sub-bursts, says astronomer Andrew Seymour of the Universities Space Research Association at Arecibo. That complicates the picture even further. The sub-bursts might be intrinsic to the object that creates them, or they might be the result of the waves passing through blobs of plasma, he says.

Finally, the observations showed that the waves were polarized, all oriented in the same direction. But something had twisted the waves, forcing them to rotate in corkscrews on their way from the dwarf galaxy to Earth. Follow-up observations with the Green Bank Telescope in West Virginia confirmed the twists were really there.

Story continues below image
The only phenomenon that is known to create such a rotation is a strong magnetic field, Michilli says. There are two main hypotheses for the bursts’ behavior. One is that they are from a young, energetic neutron star called a magnetar that’s sitting inside a shell of magnetized gas, which the magnetar itself expelled in a supernova explosion. The magnetar emits radio waves, and the shell makes them rotate.

“If you have young magnetars that have just been born in supernova explosions, only a few decades old, they could be very bursty objects, have very violent youths, and that could give rise to repeating fast radio bursts,” says astronomer Brian Metzger of Columbia University, who was not involved in the new study.

But Michilli points out that in order to drive such strong magnetic fields, the supernova remnant would have to be a million times brighter than even the brightest remnant in the Milky Way, the Crab nebula (SN: 1/1/11, p. 11). Instead, the bursts could come from a young neutron star orbiting the dwarf galaxy’s dominant black hole, which probably has between 10,000 and 1 million times the mass of the sun, he says.

Such large black holes are already known to have strong magnetic fields and to make polarized light rotate. And a neutron star nestling up next to a black hole is a plausible setup: There’s one orbiting the supermassive black hole at the center of the Milky Way. Although this neutron star’s radio waves don’t come in brief bright bursts, they are also twisted, the researchers say.

If not for that neutron star, “this would seem very contrived to me,” Metzger says. “That combines two unlikely things.”

More exotic explanations remain possible, too, Michilli’s team says.

“The joke is there are far more theories than there are observed bursts,” said coauthor Jason Hessels of the University of Amsterdam in a news conference January 10. “In the coming weeks we expect that very creative theorists will come up with explanations for our observations we haven’t thought of yet.”

Questions remain about whether all fast radio bursts, including the ones that don’t repeat, come from such exciting neighborhoods. “We cannot say yet if there are two classes with different properties, or if it’s one class of fast radio bursts and they just happen to be seen in different configurations,” Michilli says.

It’s also still unknown whether any other bursts have twisted waves at high frequencies — the smoking gun for strong magnetic fields. Measuring the rotation of the waves in FRB 121102 required hacking Arecibo with new hardware that let it detect higher frequencies than before. “We weren’t able to do that until recently,” Seymour says. “I stayed up on Christmas evening [2016] and made these observations, and luckily it paid off.” Maybe other fast radio bursts that Arecibo observed didn’t show the same rotation signature because the telescope wasn’t ready to measure it yet.

Hessels thinks “the prospects are quite good” for figuring out what fast radio bursts are in the near future. Several new radio observatories around the world are due to come online in the next few years. “These are going to be FRB factories,” Hessels said. He expects to find other repeating bursts, if they exist. “Then we can see if this repeating source is really a complete oddball, or part of a distribution of sources.”

Laser experiment hints at weird in-between ice

A proposed form of ice acts like a cross between a solid and a liquid. Now, a new study strengthens the case that the weird state of matter really exists.

Hints of the special phase, called superionic ice, appeared in water ice exposed to high pressures and temperatures, researchers report February 5 in Nature Physics. Although such unusual ice isn’t found naturally on Earth, it might lurk deep inside frozen worlds like Uranus and Neptune (SN Online: 3/5/12).
Normal ice is composed of water molecules, each made of an oxygen atom bonded to two hydrogen atoms. As water freezes, those molecules link up to form a solid. But superionic ice is made up of ions, which are atoms with a positive or negative electric charge. Within the material, hydrogen ions flow freely through a solid crystal of oxygen ions.

“That’s really strange behavior for water,” says study coauthor Marius Millot, a physicist at Lawrence Livermore National Laboratory in California. Although the superionic state was first predicted 30 years ago, “up until now we didn’t really know whether this was something that was real.”

At extremely high pressures, familiar substances like water can behave in unusual ways (SN: 1/14/12, p. 26). Working with a sample of ice that was crushed between two diamonds, Millot and colleagues used a laser to create a shock wave that plowed through the ice, boosting the pressure even more. At first, the density and temperature of the ice ramped up smoothly as the pressure increased. But at around 1.9 million times atmospheric pressure and 4,800 kelvins (about 4,500° Celsius), the scientists observed a jump in density and temperature. That jump, the researchers say, is evidence that superionic ice melted at that point. Although we normally think of ice as being cold, at high pressures, superionic ice can form even when heated. The melting occurred at just the conditions that theoretical calculations predict such ice would melt. The physicists didn’t measure the pressure at which the superionic phase first formed.

The electrical conductivity of the material provided another hint of superionic ice: The level of conductivity was consistent with expectations for that phase of matter. Whereas metals conduct electricity via the motion of electrons, in superionic ice, the flowing hydrogen ions transmit electricity.
The researchers “provide quite good evidence” of the new phase, says Alexander Goncharov, a physicist at the Carnegie Institution for Science in Washington, D.C., who was not involved with the study.

Others are more cautious about the significance of the work. “It’s definitely providing more insight into water at these conditions,” says physicist Marcus Knudson of Washington State University in Pullman. But, he says, “I don’t see strong evidence that there’s a melting transition in their data.”

So more work remains before this weird kind of ice is fully understood. For now, the superionic state of water seems likelier, but still on thin ice.